Biological tissues are made up of different cell types arranged in specific patterns, which are essential to their proper functioning. Understanding these spatial arrangements is important when ...
Scientists at Duke-NUS Medical School have developed two powerful computational tools that could transform how researchers study the "conversations" between cells inside the body. The tools, called ...
Technological development is key to improving the way hematologic cancer is diagnosed and treated. With this vision, the Josep Carreras Leukemia Research Institute is committed to the creation and ...
This figure shows how the STAIG framework can successfully identify spatial domains by integrating image processing and contrastive learning to analyze spatial transcriptomics data effectively.
PALO ALTO, Calif.--(BUSINESS WIRE)--Curio Bioscience today announced it has commenced commercial operations with the launch of Curio Seeker, the world’s first high-resolution, whole-transcriptome ...
(MEMPHIS, Tenn. – December 3, 2025) Spatial transcriptomics provides a unique perspective on the genes that cells express and where those cells are located. However, the rapid growth of the technology ...
Conventional transcriptomic techniques have revealed much about gene expression at the population and single-cell level—but they overlook one crucial factor: spatial context. In musculoskeletal ...
Single-cell RNA transcriptomics allows researchers to broadly profile the gene expression of individual cells in a particular tissue. This technique has allowed researchers to identify new subsets of ...
Advancements to include CosMx® Whole Transcriptome Panel; enhanced technology engine to power CellScape™ for spatial proteomics; expansion to 1000-plex protein assay on GeoMx® DSP; and launch of ...
This eBook cuts through the complexity of spatial techniques, featuring a series of interviews with pioneers in the field, and peer-reviewed research from the Taylor & Francis journal portfolio. This ...