A graphene layer consists of carbon atoms linked by covalent bonds, forming a honeycomb structure. Its excellent electron mobility, chemical and physical stability, electrical and thermal conductivity ...
A research team has developed an n-channel diamond MOSFET (metal-oxide-semiconductor field-effect transistor). The developed n-channel diamond MOSFET provides a key step toward CMOS (complementary ...
Field-effect transistors (FETs) are the cornerstone of modern electronic devices, providing the essential functionality for digital logic, analog processing and power management. The fundamental ...
With the right mix of materials, TFETs promise cooler, smaller, and more efficient circuits for everything from the Internet of Things to brain-inspired computers. But before they can leave the lab, ...
A new publication from Opto-Electronic Science; DOI 10.29026/oes.2024.230046 discusses photo-driven Fin Field-Effect Transistors. Infrared detectors are the core components of infrared detection ...
A new technical paper titled “A Cryogenic Ultra-Thin Body SiGeSn Transistor” was published by researchers at TU Wien, Johannes Kepler University, Universidad de Granada, and Max Planck Institute for ...
A technical paper titled “CFET Beyond 3 nm: SRAM Reliability under Design-Time and Run-Time Variability” was published by researchers at TU Munich and IIT Kanpur. Find the technical paper here. May ...
Share on Facebook (opens in a new window) Share on X (opens in a new window) Share on Reddit (opens in a new window) Share on Hacker News (opens in a new window) Share on Flipboard (opens in a new ...
Recently in material science news from China we hear that [Hailin Peng] and his team at Peking University just made the world’s fastest transistor and it’s not made of silicon. Before we tell you ...
This research was published in Advanced Science ("High-temperature and high-electron mobility metal-oxide-semiconductor field-effect transistors based on n-type diamond"). World’s First N-Channel ...
(Left) Atomic force microscope image of diamond epilayer surface morphology. (Middle) Optical microscope image of the diamond MOSFET. (Right) Performance of the MOSFET measured at 300°C. The drain ...